Structural signatures of the Amazonian Craton in eastern Colombia from gravity and magnetometry data interpretation

Ismael Enrique Moyano Nietoa,b,*, German A. Prietoa

a Departamento de Geociencias, Universidad Nacional de Colombia, Bogotá, Colombia
b Servicio Geológico Colombiano, Dirección de Recursos Minerales, Diagonal 53, 34-53 Bogotá, Colombia

ARTICLE INFO

Keywords:
Magnetic/gravity data interpretation
Multiscale edge detection
NW Amazonian Craton
Structural interpretation

ABSTRACT

Geophysical interpretation of potential field data plays an important role in the integration of geological data. Estimation of density and magnetic susceptibility variations within the upper crust helps evaluating the continuity of geological structures in the field. In the present study we use gravity and magnetic data in NW Amazonian Craton in Colombia. Total horizontal gradient of the reduction to magnetic pole were used to delineate magnetic lineaments and domains showing four zones, each with its own features. Multiscale edge detection (worming) of the data help delineate upper crustal structures that we interpret as tectonic boundaries that correlate with the four zones identified. 3D density and magnetic susceptibility inversion showed high density and/or high magnetic susceptibility sources correlated with these crustal structures. Zone (1) is located south of the Guaviare River, with predominant NW-SE and NE-SW magnetic lineaments; zone (2), located from south of the Guaviare River to the north, present nearly E-W magnetic lineaments and a deep E-W edge interpreted as a possible shear zone parallel to Guaviare, Orinoco and Ventuari rivers; zone (3) from south of the Vichada River to the north, with NE-SW and NW-SE lineaments; N-S zone (4) cuts the zones (2) and (3), characterized by high density/magnetic susceptibility source bounded by N-S deep edges. A more complete tectonic evolution interpretation requires further work, but we speculate that the zone (4) could indicate an aborted rift/collision suture and that the zone (2) is indicative of a younger deformation event. Shear direction at (2) is not clear: geological maps show NEE-SWW right-lateral faulting, but geophysical anomalies suggest left-lateral displacement, highlighted by left dislocation of the Orinoco River. We also speculate that a N-S edge located at the SE of the area can be related with the Atabapo Belt and the limit of Ventuari-Tapajós and Rionegro geochronological provinces.

1. Introduction

Geoscientific research of the Amazonian Craton in Colombia involves great challenges, not only due to its extent (nearly the 50\% of the continental area of the country) and geological complexity, but also because most of the crystalline rocks that compose it are covered by sedimentary rocks and recent deposits (Gómez et al., 2015a; Gómez et al., 2015b; De la Espriella et al., 1990; González et al., 2014; Alfonso et al., 2014; Ochoa et al., 2014). In addition, dense vegetation coverage makes it difficult to access and identify outcrops of cratonic rocks, making this area one of the least geologically known areas in the world (Santos et al., 2000). Consequently, geological maps and models of the Amazonian craton in Colombia are mostly based on the integration of rock exposures at the east of the country, Brazil and Venezuela, and from isolated exposures within the sedimentary coverage (Galvis et al., 1979; Brune-ton et al., 1983; López et al., 2016; Ochoa et al., 2014).

Colombia is located at the NW portion of the Guiana Shield (Fig. 1), that corresponds to the northern half of the Amazonian Craton (Santos et al., 2000; Brito, 2011; Ibáñez-Mejía et al., 2011; Kroonemberg, 2019; Cediel, 2019). The Guiana Shield is considered the backstop for the progressive accretion and continental growth of NW South America from Middle to Upper Proterozoic through to the Holocene (Cediel, 2019). Rocks of the Guiana shield are exposed in eastern Amazonia and eastern Llanos in Colombia, being progressively covered by younger sediments (Ordovician to Cenozoic Age) westwards to the Andes and southwards to the Amazon River (Kroonemberg, 2019).

Geological and geochronological models for the Amazonian Craton (Fig. 2) propose that the craton evolved from an ancient nucleus with
episodic lateral accretion of belts and/or terranes (Barrios et al., 1985; Tassinari and Macambira, 1999; Santos et al., 2000; Brito, 2011; Ibáñez-Mejía et al., 2011; Kroonemberg, 2019). Different tectonic/geochronological provinces or domains were delimited by the predominance of a characteristic geochronological pattern and coherence of the ages of different geological units (Tassinari and Macambira, 1999). Other models also integrate data from new geochronological methods and recent geological mapping, mainly in Brazil and Guiana (Santos et al., 2000; Kroonemberg, 2019). Geographic boundaries between provinces complement the geochronological data with some geological and geophysical control, but there is still debate on the exact boundaries because of inconsistency (Jackson, 1972; Parker, 1977; VanDecar and Snieder, 1994) in age determinations (e.g., two similar samples give different age) or the lack of reliable geological information (Tassinari and Macambira, 1999).

The basement of the Amazonian Craton in Colombia (Fig. 3) is formed by Paleoproterozoic granitoids and granitic gneisses identified Mitú Migmatitic complex (Gómez et al., 2015b; Galvis et al., 1979) or Mitú Complex (Celada et al., 2006; Rodríguez et al., 2010; López et al., 2010; Bonilla et al., 2016) or Cuchivero Group in Venezuela (Hackley et al., 2005). Basement rocks were intruded by Late Proterozoic syn-tectonic granites and Mesoproterozoic anorogenic granites (Kroonemberg, 2019). The most extensive anorogenic intrusive is the Middle Proterozoic Parguaza Rapakiwi Granite (Hackley et al., 2005). In Colombia, the Parguaza Granite exposures are limited to the left margin of the Orinoco River and isolated hills surrounded by recent deposits. Also, other Parguaza-like bodies were identified to the south, intruded within rocks of the Mitú Complex (Bruneton et al., 1983; De la Espriella et al., 1990; Bonilla et al., 2016). The Mitú Complex is also covered by low-grade metamorphosed and non-metamorphic sandstone plateaus and intruded by small Neoproterozoic basic and alkaline intrusions (Kroonemberg, 2019).

In this contribution we identify and delineate major structural and tectonic features within the crystalline rocks of the Amazonian Craton by modelling and interpretation of geophysical (gravity and magnetic) data. We integrate this new data with geological information to help improve the current structural/tectonic models for this area.

2. Geological setting

The study area corresponds to nearly 160.000 km2 of eastern Colombia/western Venezuela (Fig. 3). Available geological maps for the whole area have a 1:500.000 scale for Colombia (Gómez et al., 2015b)
and 1:750,000 scale for Venezuela (Hackley et al., 2005). In approximately 70% of the study area, the Amazon Craton is covered by Cenozoic sedimentary deposits.

Crystalline basement is exposed in the southern region of Fig. 3 and to the east in Venezuela. General characteristics of the geological units presented in Fig. 3 are summarized in Table 1.

Geological maps from other projects (Galvis et al., 1979; Bruneton et al., 1983; De la Espriella et al., 1990) and 1:100,000 scale geological maps of the Servicio Geologico Colombiano (Cardozo et al., 2009; Lopez et al., 2010; Ochoa et al., 2012; Gonzalez et al., 2014; Alfonso et al., 2014; Ochoa et al., 2014) provide additional information like the identification of rocks related to the Mitú Complex further north of the actual maps (green dots, Fig. 3) (Lopez et al., 2010; Alfonso et al., 2014). Also, location of Parguaza type granites 70 km westward from the Orinoco River (blue dot, Fig. 3; Alfonso et al., 2014) and the identification of the Neoproterozoic (?) “Cerro El Carajo” metasandstones (red dot, Fig. 3) (De la Espriella et al., 1990; Gonzalez and Pinto, 1990; Ochoa et al., 2012).

Table 1
Description of the geological/geochronological units for the study area (Fig. 3).

<table>
<thead>
<tr>
<th>Name/code</th>
<th>Age</th>
<th>Lithologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitú Complex PP-Mmg1</td>
<td>Paleoproterozoic</td>
<td>Plagioclase feldspar gneisses, amphibolite, migmatites, quartzites, quartz-gneiss and granites with variations to alaskytes and monzonites;</td>
</tr>
<tr>
<td>Xbc</td>
<td>Early Proterozoic</td>
<td>Granite to granodiorite gneiss;</td>
</tr>
<tr>
<td>Xcg</td>
<td>Early Proterozoic</td>
<td>Silicic intrusive rocks;</td>
</tr>
<tr>
<td>Xmp</td>
<td>Early Proterozoic</td>
<td>Granite, granite gneiss, augen gneiss and pegmatite;</td>
</tr>
<tr>
<td>Xcc</td>
<td>Early Proterozoic</td>
<td>Rhyodacite to rhyolitic tuffs, porphyries, flowes and granophyre;</td>
</tr>
<tr>
<td>Xg</td>
<td>Early Proterozoic</td>
<td>Calc-alkaline granites;</td>
</tr>
<tr>
<td>Xgu</td>
<td>Early Proterozoic</td>
<td>Undivided intrusive rocks;</td>
</tr>
<tr>
<td>Xmo</td>
<td>Early Proterozoic</td>
<td>Moriche, Cinaruco and Esmeralda Formations</td>
</tr>
<tr>
<td>Xyr</td>
<td>Early to Middle Proterozoic</td>
<td>Roraima Group and Pre-Roraima unidivided sedimentary rocks</td>
</tr>
<tr>
<td>MP-Mmgb1</td>
<td>Mesoproterozoic</td>
<td>Metagranitic intrusives, granite, granite gneiss, augen gneiss and pegmatite;</td>
</tr>
<tr>
<td>Yong</td>
<td>Middle Proterozoic</td>
<td>Metagranitic, metasedimentary, quartzites, & metapelites with low grade regional metamorphism</td>
</tr>
<tr>
<td>Ylg</td>
<td>Middle Proterozoic</td>
<td>Silicic intrusive rocks;</td>
</tr>
<tr>
<td>Ypg/MP-PF1</td>
<td>Middle Proterozoic</td>
<td>Rupakivi granite;</td>
</tr>
<tr>
<td>N1-Sc</td>
<td>Quaternary</td>
<td>Alluvial, eolic and terrace deposits</td>
</tr>
<tr>
<td>Qal/Q-e/Q-t/Q-al</td>
<td>Quaternary</td>
<td>Alluvial, eolic and terrace deposits</td>
</tr>
</tbody>
</table>

Fig. 3. Regional geology (modified from Gómez et al., 2015b and Hackley et al., 1995). Red dot: Cerro El Carajo metasandstones (Ochoa et al., 2012). Blue dot: westernmost exposure of Parguaza Granite (Alfonso et al., 2014). Green dots: northernmost exposure of Mitú Complex (Lopez et al., 2010; Alfonso et al., 2014). See Table 1 for detailed description of each unit. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

zones within cratonic areas, where a characteristic geochronological pattern predominates, and the age determinations obtained by different isotopic methodologies for different geological units are coherent (Tassinari and Macambira, 1999). Geological provinces are a region or area of large extent with similar features throughout and capable of being considered as a unit (Allaby, 2013). For the Amazonian Craton, geological provinces are areas with its own geological, structural, magmatic and isotopic features (Santos et al., 2000). The VTP/RNJ and Rionegro provinces represent areas of juvenile continental crust, accreted by stacking of successive magmatic arcs, probably produced by subduction of oceanic lithosphere at the beginning of the collision between the older provinces of the Amazonian craton and another continental mass which is now probably part of the younger provinces and Laurentia (Tassinari and Macambira, 1999; Santos et al., 2000; Cordani et al., 2016b; Kroonemberg, 2019). Cordani et al., 2016b also concluded that the possible NE boundary of the RNJ province with the older VTP would be located close to or along the international boundary between Colombia and Venezuela.

Geophysical interpretation of the principal tectonic domains in Brazil (Gusmao and Freitas, 2014) finds that the proposed extend of the VTP is characterized by a positive NW-SE Bouguer anomaly. Also, they concluded that its limits with the other provinces are well defined by gravity gradients that may register the superposition of crustal fragments with different density.

2.2. Structural and tectonic framework

Structural and tectonic features within the basement rocks (Gomez et al., 2019; Gómez et al., 2015b) are scarce in Colombia due to the sedimentary coverage compared to the east (Fig. 4a), where more structural data are available (Hackley et al., 2005).

Graterol (2009) interpreted structural features from airborne gravity and magnetometry data on the north and east Llanos Basin in Colombia. This interpretation suggests the presence of structural highs and lows on
the Precambrian basement, controlled by NNW-SSE normal faults that created possible sedimentary basins (Fig. 4b). Arminio et al. (2013) proposed the existence of the “Mantecal Graben” (red lines, Fig. 4c), a NNE-SSW structure extended from Venezuela to the south into Colombia, supported by the presence of folded Neo-Proterozoic (?) sandstones of the Cinaruco Formation exposed on the eastern shoulder of the Graben.

Recent work of Cediel (2019) combined interpretation from multiple sources to integrate a paleogeographic sketch map with relevant Meso and Neoproterozoic tectonostratigraphic units for the Guyana Shield (Fig. 4d). This sketch marks an important structure to the NW of the area as the “Arauca Impactogen” (San Fernando Graben in González et al., 2017) and the Atabapo and Rionegro rifts to the SE. This work also presented a structural sketch map of south America (blue lines, Fig. 4c) that, for the study area, delineate the E-W Guaviare Fault at the south and NNE-SSW normal faults that control the Mantecal Graben, and NNW-SSE faults that control the Rionegro and Atabapo Rifts.

Fig. 4 reflects the present-day knowledge of the geology and tectonic evolution of the Amazonian Craton for the Colombian portion of the study area, that is supported by regional-scale geophysical data interpretation and comparison with geological information from nearby areas. A significant range of models have been proposed for the same
geological region (see Fig. 4), highlighting our still misunderstood Amazonian Craton in the region.

3. Geophysical datasets and processing

Major deformation events, crustal-scale accretions and magmatic activity episodes could potentially produce identifiable crustal heterogeneities characterized by spatial variations in physical properties of the rocks. Gravity and magnetic methods measure lateral variations of the Earth’s gravity and magnetic fields, sensitive to density and magnetic susceptibility variations of the rocks within the crust. Previous studies demonstrate how potential fields can help understand the geological setting of the Amazon Craton and other areas with similar structural and tectonic complexity (Gusmao and Freitas, 2014; Baines et al., 2009; Baines et al., 2010; De Castro et al., 2013; Gusmao et al., 2005; Heath et al., 2009; Isles and Rankin, 2013; Yan et al., 2011).

A technique to process potential field data to study structures and tectonic boundaries is the multiscale edge detection or ”worming” (Horowitz et al., 2000; Heath et al., 2009; Crawford et al., 2010; Yan et al., 2011; FitzGerald and Milligan, 2013; Kohanpour et al., 2018). The main purpose of this technique is to locate the edges of magnetic and gravity sources from gravity and magnetic field anomaly maps (Blakely and Simpson, 1986). The process includes the location of points of maximum value on a map of horizontal gradient magnitudes. These points can be joined into lines to form a 2D “pseudo-geology” image (Heath et al., 2009). The application of these steps at multiple upward continuation levels of the potential field data constraints the position and strength of the edges of the sources, and the results can be interpreted in terms of the 3D architecture and depth extent of geological structures (Yan et al., 2011). This technique could represent a compromise between a mostly qualitative “visual inspection” and a mostly quantitative determination of the vertical and horizontal extent of geological bodies (Hornby et al., 1999; Baines et al., 2009; Bird, 2001; Ferreira et al., 2011; Park et al., 2013; Soares and Da Costa, 2013; González et al., 2017; Geng et al., 2019).

3.1. Previous geophysical studies

Graterol (2009) calculated the depth to the top to the Paleozoic and Precambrian basement using an inversion algorithm based on the gravitational attraction of vertical prisms. Moyano et al. (2018) presented modelling and interpretation of regional to local magnetic anomalies using a 3D inversion of the magnetization vector (MVI, Ellis et al., 2012). The surface projection of the magnetic sources modelled were presented as polygons with information about the depth to the causative magnetic body and magnetic susceptibility cutoff from the 3D model.

Other studies focused on qualitative interpretation of potential field maps to provide geological information about the structure of the Amazonian Craton in the area. Kroonenberg and Reeves (2012) analyzed available gravity and magnetic maps of the Amazonian Craton in Colombia to delineate some major structures and basement features. De Boorder (2019) presented a revised version of a structure in eastern Colombia named “La Trampa Wedge” (De Boorder, 1981) supported by magnetic images presented by Kroonenberg and Reeves (2012). In Celada et al. (2006, see appendix) the delineation of magnetic domains and other linear features south of the area of interest are presented, without additional geological/tectonic interpretation.

3.2. Geophysical datasets

Available gravity and magnetic datasets vary from low-resolution/world coverage gravity (EIGEN 6C4, Förste et al., 2014) and magnetic anomalies (EMAG2V3, Meyer et al., 2017) to detailed/regional coverage compilations from the Colombian Hydrocarbon Agency (ANH) and the Servicio Geológico Colombiano (SGC) (Graterol and Vargas, 2010; Moyano et al., 2018).

In this study we use gravity (Fig. 5) and magnetic (Fig. 6) datasets from EIGEN6C4, EMAG2V3 and the ANH that provide a comprehensive coverage of the region of interest, and include the high-resolution airborne magnetic anomaly map from the SGC (see Table 2 for a more complete technical specification of all datasets). We also provide Supplementary Figs. (S1 and S2) with the location of the observation points for ANH gravity (ground and airborne) and magnetic (airborne)
To construct a single magnetic grid of regional coverage, dataset from ANH were upward continued to 4.000 m and merged with EMAG 2 V3 grid, using “Gridknit” extension provided with Oasis Montaj software (Geosoft). Merged-regional magnetic grid is presented in Fig. 6d.

3.3. Data processing and interpretation

As was pointed out above, geological and structural models of the Amazonian craton in the study area are mostly qualitative, based on geophysical data. This explains why the tectonic framework of the craton itself remains under debate (Graterol, 2009; Arminio et al., 2013; Cediel, 2019; De Boorder, 2019; Kroonemberg, 2019). We integrate previous geological observations and well-known geophysical processing techniques (Horowitz et al., 2000) to provide new information about the structural configuration of the basement rocks and upper crust in the study area.

3.3.1. Magnetic domains and lineaments

Qualitative interpretation of linear features and magnetic domains
were performed using the reduced to pole (RTP, Baranov, 1964) dataset of Fig. 6c. This magnetic dataset has a resolution that allows to recognize linear features in the magnetic basement and to delineate different magnetic domains. The dataset was processed to calculate the total horizontal gradient from the RTP (Fig. 7a). The total horizontal gradient represents the maximum gradient in the vicinity of the observation point (Dentith and Mudge, 2014). Regions with sharp variation and irregular features (strong gradients) are highlighted in the image; for example, spatially coherent discontinuities will have high intensity allowing for the visual recognition of objects and patterns of the image (Hornby et al., 1999).

The qualitative interpretation of magnetic data indicates that there are lateral variations in the structural framework and magnetic properties of the basement rocks across the area. These lateral variations can be grouped roughly into four “zones” (Fig. 7b). The southern (red) area shows predominantly NW-SE and NEE-SWW features; the central (yellow) area has predominant NEE-SWW lineaments. These two areas are separated by a NEE-SWW lineament that cross all the study area, that clearly cuts the continuity of the NW-SE lineaments of the red area and that is located to the south of the Guaviare Fault (Fig. 4c). The northern (green) area is separated from the central (yellow) area by the transition from mostly NEE-SWW lineaments to NE-SW/NW-SE linear features to the north. The central parts of the middle and northern areas are crossed by a narrow strip (blue region) with predominant N-S lineaments.

Linear features interpreted from magnetic data (Fig. 7b) shows significant variations across the area. In the red area, NEE-SWW linear features predominate over NW-SE lineaments. Along the yellow area, almost all linear features have E-W to NEE-SWW trends and on the green area lineaments are equally NW-SE and NE-SW. Non-linear features are predominant at the east of the green area principally.

Areas with abrupt lateral changes in the frequency and/or amplitude of the horizontal gradient were interpreted as possible changes in the distribution of the magnetization of the basement rocks (Blakely and Simpson, 1986). These areas were delineated in different magnetic domains (Fig. 8), that are in many cases limited by sharp edges with strong gradients. For example, the magnetic domains F, G, K in Fig. 8, have a circular shape and can be easily observed in Fig. 7a.

We want to highlight a remarkable domain with high gradients (“C”, Fig. 8) that strikes N-S and extends from about 3.5 N to 5.5 N, and corresponds to the Blue Area in Fig. 7b. This region seems to correlate with the basement high interpreted by Graterol (2009) (Fig. 4b). Also, this N-S domain cuts many of the magnetic lineaments of the central and northern zones (yellow, green, Fig. 7b) and apparently separates two medium to low-gradient areas (lighter colors, Fig. 7a) marked as domains A and B in Fig. 8.

3.3.2. Multiscale edge detection “worming”

Multiscale edge detection applied to the potential field data of the study area follow the steps described by Heath et al. (2009). First, the

<table>
<thead>
<tr>
<th>Source</th>
<th>Type</th>
<th>Dataset spec.</th>
<th>Coverage of study area</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMAG2V3 Satellite, ship, airborne magnetics.</td>
<td>Data points each 4.000 m., leveled at 4.000 m altitude. Gridded at 5 × 5 km cell size</td>
<td>Complete</td>
<td></td>
</tr>
<tr>
<td>EIGEN6C4 Satellite, surface Gravity</td>
<td>Data points each 10.000 m. Bouguer density: 2.67 g/cm³ Gridded at 10 × 10 km cell size.</td>
<td>Complete</td>
<td></td>
</tr>
<tr>
<td>ANI Airborne/surface gravity & Airborne magnetics.</td>
<td>Variable between projects, Grid with 2.500 m point separation and leveled at 1.200 m altitude. Bouguer density: 2.67 g/cm³ Gridded at 2.5 × 2.5 km cell size.</td>
<td>Complete</td>
<td></td>
</tr>
<tr>
<td>SGC Airborne Magnetics /Gamma. Single project with multiple blocks flew from 2013 to 2017.</td>
<td>Distance between flight lines: 500 m to 1000 m. 100 m altitude above terrain. Gridded at 250 × 250 m cell size.</td>
<td>Partial</td>
<td></td>
</tr>
</tbody>
</table>

Table 2 Technical specifications of the geophysical datasets used.

Fig. 7. a) Horizontal gradient of the RTP (dataset: Geological Survey of Colombia); b) Structural zones interpreted from magnetic data.
potential field maps (Bouguer anomaly and Reduction to magnetic pole) were upward continued to various levels. Second, the horizontal gradient for each level were computed and the points of maximum slope were delineated. For the location of maxima points in the horizontal gradient grid were applied the method presented by Blakely and Simpson (1986) that is included in the “Source Edge Detect” extension of Oasis Montaj (Geosoft).

The process described above were applied to the Bouguer anomaly grid (Fig. 5b) and the magnetic data of Fig. 6a and Fig. 6b. Upward continuation levels applied were 2, 4, 8, 16 and 32 km for gravity data and 0.5, 1, 2, 3, 4, 6, 8, 16 and 32 km for magnetic data. The integrated maps are presented in Fig. 9. It must be pointed that the upward continuation distance does not mean a specific depth (Heath et al., 2009).

The worms interpreted from gravity data (Fig. 9a) delineate some structures that, by its coherency on the multiple levels of upward continuation, can be interpreted as features that affect the basement and may also have deep penetration into the upper crust. Some of these features can be correlated with geological contacts in the Amazonian Craton in Venezuela. An example is at the SE of the area (red box, Fig. 9a) were the multiscalar edges delineate the contact of the Parguaza Granite with rocks of the Cuchivero Group and a NE-SW normal fault reported by (Hackley et al., 2005) (Fig. 9d) and that corresponds roughly to the eastern limit of the “Rionegro and Atabapo volcanics” tectonos-tratigraphic unit of Cediel (2019) (Fig. 4d).

In Colombia, the most remarkable features are three parallel worms with NNW-SSE orientation (Fig. 9a). The central edge extends more than 200 km northward and then bends to the W. The configuration of the edge at multiple scale visualization (Holden et al., 2000) indicate that it can be a nearly vertical feature with a subtle inclination to the east from 5 N to the north. The edge located to the west extends between 4.2 N and 5.2 N and have a subtle inclination to the west. The edge located to the east extends NNW-SSE between 4.2 N and 5.3 N and then bends to the NE. This last edge has a subtle inclination to the east on its NNW-SSE portion. These NNW-SSE worms correlate with some of the normal faults interpreted by Graterol (2009) (Fig. 4b) but clearly are in a different structural direction and position from the NNE-SSW Mantecal graben (Fig. 4c) reported by Arminio et al. (2013) and Cediel (2019).

Another feature of interest is a series of short, vertical, E-W edges located along 4 N and that apparently limit the extension to the south of the NNW-SSE edges described above. This nearly E-W edge correlates with the Guaviare Fault reported by Cediel (2019) (Fig. 4c).

Worms from magnetic data (Fig. 9b) are more random at the “shallow” levels of upward continuation that can be associated to shallow sources and noise. However, the medium to “deep” boundaries show similar correlations with the gravity edges and geological structures, like the SE limit of the Parguaza granite in Venezuela. In Colombia, some coherency between the gravity and magnetic features is found, like the central and northern portion of the western NNW-SSE feature that extends from 4.2 N to the north-northeast (blue box, Fig. 9b). Also, it must be noted that the E-W feature along 4 N (Guaviare Fault) is more evident in the magnetic data.

Fig. 9c shows the principal boundaries identified from the joint interpretation of the gravity and magnetic worms, and the integration of these boundaries with the qualitative interpretation of magnetic data and available structural information are shown in Fig. 10.

From Fig. 10 we emphasize that the deep, crustal penetrating features identified by “worming” are closely related to the structural framework and boundaries of the domains described in the qualitative interpretation. This correlation indicates that the linear features and lateral variations on the magnetization of the basement rocks, associated with deep penetrating edges interpreted from gravity and magnetic data, could also reflect boundaries between different tectonic domains.

3.3.3. 3D inversion of gravity and magnetic data

3D inversion of selected gravity and magnetic datasets allows to estimate the regional distribution of the physical properties (density and magnetic susceptibility) in the basement rocks. Density and magnetic susceptibility models can provide valuable information to explain the variations in the measured gravity and magnetic fields and hence to integrate a more robust framework to the qualitative and multiscale edge detection interpretation.

For the 3D modelling of the geophysical data were used VOXI Earth Modelling (Geosoft). A starting model of 2500x2500x500 meters cell dimension were built for density and magnetic susceptibility (MVI) inversion. To remove high frequency anomalies related to shallow sources, gravity data of Fig. 5a were upward continued to 4.000 m and a low pass-filter of 15 km wavelength was applied to the magnetic data of Fig. 5e. Magnetic susceptibility inversion used the Magnetization Vector Inversion algorithm (MVI) that incorporates both remanent and induced magnetization. MVI inverts jointly the intensity and direction of magnetization, allowing the magnetization vector to vary direction throughout the inversion area (MacLeod and Ellis, 2013). This approach has better results understanding that non-induced magnetization plays a far more important role than previously thought in the origin of magnetic anomalies (Ellis et al., 2012).

The density distribution calculated by inversion of gravity data (Fig. 11a) range from 2.52 g/cm3 (blue) to 2.9 g/cm3 (red/cyan). Magnetic susceptibility estimated by the amplitude of the magnetization vector (Fig. 11b) range from 3.7×10^{-6} SI (blue) to 0.05 SI (cyan).

Due to the limited geological information that can be used to constrain the models for a great portion of the study area, interpretation should be addressed carefully due to the non-uniqueness principle of the inversion of geophysical data. However, both density and magnetic susceptibility models computed for the study area shows good correlation with the possible geotectonic domains identified by qualitative interpretation and multiscale edge detection.

Fig. 12a shows the plan view of the zones with density higher than 2.71 g/cm3 (magenta) and lower than 2.69 g/cm3 (blue). These sources are located principally at 4 to 4.3 km below the surface and shows correlation with the edges of the domains interpreted, like the central NW-SE and eastern domains. Zones with magnetic susceptibility higher...
than 0.01 SI (Fig. 12b) also show some correlation with regional features: magnetic sources are shallower at the NW of the area (<1 km) and deeper to the SW (~2 km) and east (>7 km). It is evident that almost all the magnetic sources are located north of the E-W boundary recognized in the multiscale edge detection, and that the deepest sources at the east are limited by the easternmost NNW-SSE boundary interpreted.

4. Discussion

As pointed above, the NW portion of the Amazonian Craton is one of the least geologically known areas in the world. To overcome that restrictions, geophysical datasets that register the lateral variations in the earth’s gravity and magnetic fields over the study area were used. Geophysical data were processed and interpreted to associate the field responses with density and magnetic susceptibility variations in the upper crust.

The most widely accepted models for the evolution Amazonian Craton (Fig. 2) propose that the Craton evolved from an ancient nucleus by successive accretion of younger terrains/provinces. The Venturari-Tapajos (VTP) and Rionegro-Juruena (RNJ) geochronological provinces (Tassinari and Macambira, 1999) or the Rionegro geological province (RNP, Santos et al., 2000), represent juvenile continental crust accreted to the older provinces by stacking of successive magmatic arcs. Cordani et al., 2016b proposes two NW-SE belts in the Mitú Complex (Atabapo and Vaupés belts) formed by stacking of magmatic arcs in different pulses of orogenic activity. Of these belts, the Atabapo belt should be located at the SE of the study area, nearly parallel to the border between Colombia and Venezuela.

Available structural interpretations and sketches for the study area (Fig. 4) used principally geophysical data to identify lineaments and

Fig. 9. “Worming” results on the study area. a) from gravity data; red box: worms correlated with tectonic boundaries (see text). b) from magnetic data; blue box: example area with correspondence between gravity and magnetic worms. c) principal edges interpreted from gravity and magnetic worms; d) Regional geology from Fig. 3. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
northern and southern zones. Also, this central zone truncates most of (Fig. 17). In Colombia, 1:100.000 scale geological maps register NEE-NE lineaments from the map of (Hackley et al., 2005) were used.

The central and northern zones are also crossed by a fourth, narrow zone (blue) with predominant N-S lineaments. The predominant NW-SE lineaments that contrast with the surrounding area. This domain delimits an intrusive body identified as the “Matraca Rapakivi Granite” (Bonilla et al., 2016; Bonilla, 2019). This correlation allows to expect that some of the other rounded to polygonal domains (G, H, I, J, K, L) can also constitute intrusive bodies (Fig. 17).

Possible boundaries identified by the multiscale edge detection techniques are coherent with the structural/tectonic domains delineated by the qualitative interpretation (Fig. 10). The easternmost NNW-SSE edge are coherent with the magnetic domain (B) that are associated with the Parguaza Granite. This edge could be interpreted as the expression of the intrusive contact of the Parguaza Granite with the basement rocks of the Craton. The edge located at the SE of the area, that also delineate the contact of the Parguaza Granite with the Cuchivero Group, illustrate the deep expression of this intrusive contact (red box, Fig. 9a).

The central and western NNW-SSE edges are associated with the boundaries of a high density/high magnetization domain that extends from 3.5 N to the North and have predominantly N-S orientation (Fig. 5, Fig. 10 and Fig. 12). This area corresponds to the structural zone (blue zone, Fig. 7b) that truncates the NW-SE and NE-SW lineaments present at the east and west of the area. It is important to mention that the NNW-SSE edges are coincident with important changes in the course of the Bita River (Fig. 13) that suggest tectonic control on the drainage that is also slightly present in the Tomo and Vichada rivers.

This NNW-SSE zone represents an important feature that clearly cuts the structural continuity of the central and northern zones. This feature was recognized by Graterol (2009) as a high density/high magnetic susceptibility source that forms a NNW-SSE basement high delimited by normal faults (Fig. 4b). Also, Armnino et al. (2013) and Cediel (2019) proposed a NNE-SSW graben structure (Mantecal Graben, Fig. 4c) for the same area. Our interpretation and geophysical 3D modelling support the presence of dense, magnetic source(s) within this area, as was proposed by Graterol (2009). However, the new datasets and interpretations presented in this work allow us to speculate that this narrow NNW-SSE zone could represent a deep penetrating/crustal scale discontinuity, like an aborted rift with intrusion of dense, magnetic mafic bodies or a suture zone with accretion of a volcanic arc (Fig. 17). More work should be done in this area to investigate the geological processes involved.

The NNW-SSE edges mentioned above are limited to the south by an NEE-SWW edge, located at the center of the zone with predominant NEE-SWW lineaments (yellow zone, Fig. 7b). This edge controls the course of the Guaviare River in Colombia and the Orinoco and Ventuari rivers in Venezuela (Fig. 13). This structure was reported by Cediel (2019) as a normal fault (Guaviare Fault, Fig. 4b). However, with the new data obtained in the present work, it is clear that this feature corresponds to a deeper crustal discontinuity that may produce the strong E-W orientation of the magnetic lineaments and can be related to some transient faults mapped in Colombia and Venezuela.

Density model for the study area (Fig. 12a) show that the edges interpreted are also characterized by strong contrasts between high and low density bodies. This can be related with the interpretation of Gusmao and Freitas (2014) that strong gravity gradients register the superposition of crustal fragments with different densities and probably
Fig. 11. (a) Density model. Colorbar: Density variation from reference 2.67 g/cm3; (b) Magnetic susceptibility model (Amplitude of the magnetization vector). Colorbar: Magnetic susceptibility (SI).

Fig. 12. a) plan view of isosurfaces around densities higher than 2.71 g/cm3 (Magenta) and lower than 2.69 g/cm3 (blue); b) plan view of isosurfaces (red) around magnetic susceptibilities higher than 0.01 SI. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
reflects the stacking of magmatic arcs during the formation of the VTP and RNJP. Also, density and magnetic susceptibility models of the Gawler Craton (Australia, Baines et al., 2009) shows that major changes in the physical properties correspond with major changes in lithology associated to the edges of major tectonic events. High magnetic sources (Fig. 12b) are more scattered, but its distribution and depth zonation are still coherent with the edges interpreted.

Cross sections of the density (Fig. 14b) and magnetic susceptibility models (Fig. 14c) along a W-E profile show the high variation in the density and magnetic susceptibility across the central and western NNW-SSE edges (red square) but the eastern border, associated with the Parguaza Granite, only shows high density contrast. Similarly, the NNE-SSW edge that follow the contact of the Parguaza Granite with the Cuchivero Group at the SE of the area (black square) have strong density contrast but no magnetic susceptibility expression.

The NW-SE edge located at the SE of the area parallel to the left margin of the Orinoco River is another relevant feature by its high-density contrast and correlation with the study of Cordani et al., 2016b, that concluded that the boundary between Rionegro-Juruena and Ventuari-Tapajós provinces will be located close to or along the Atabapo River. Also, Gusmao and Freitas (2014) reported high-gravity gradient features near the border of the Ventuari-Tapajós province in Brazil. The interpretation of our study locate the possible boundary of the VTP with RNJ Provinces (Tassinari and Macambira, 1999) eastward from the actual location (Fig. 2a and Fig. 17).

Depth slices from density (Fig. 15) and magnetic susceptibility models (Fig. 16) at 5 km, 10 km and 15 km also show the coherence and deep penetrating character of the edges interpreted. These edges are clearly related to major crustal features that also may correspond to tectonic boundaries.

The direction movement of the nearly E-W edge located at 4°N cannot be clearly established: while geological maps shows dextral/normal faults that apparently control some of the drainages of the area, it must be noted that the gravity and magnetic datasets (Fig. 5 and Fig. 6) and the interpretation maps and models of the present work show apparent right-lateral displacement of the deep penetrating anomalies along this boundary. Nevertheless, the emplacement of the Parguaza Granite also can be responsible of this tectonic control on the geophysical anomalies.

5. Conclusion

The present work focused on qualitative and quantitative interpretation of gravity and magnetic data in NE Colombia. The results suggest a complex structural and tectonic framework on the Amazonian Craton that was not registered in the available maps and models.

Magnetic lineaments from the total horizontal gradient of the reduction to the magnetic pole allow to recognize four main structural zones (Fig. 7b): (red) located south of the area and characterized by predominant NE-SW and NW-SE lineaments; central, E-W elongated zone (yellow), with predominant NNE-SSW lineaments; northern zone (green) with predominant NE-SW and NW-SE lineaments and a N-S
Multiscale edge detection (“worming”) applied to gravity and magnetic data show deep crustal penetrating discontinuities that are closely related to and delimitate the structural zones and can represent geotectonic limits. The most remarkable are the nearly N-S edges related with a structural zone that were interpreted as the western limit of the Parguaza granite and an important high density/high magnetic susceptibility block that extend from 3.5 N to the north that are interpreted as a possible aborted rift or a suture zone by the collision of a volcanic arc. Also, the E-W edge interpreted along the Guaviare River (Fig. 13), that limit the expression of the N-S edges to the south and also controls the direction of the Guaviare River in Colombia and Ventuari and Orinoco rivers in Venezuela, were interpreted as a younger deformation event that affected the area. Examples of the tectonic significance of these edges can be seen in the SE of the area were the edges are correlated with the intrusive contact between the Parguaza Granite and basement rocks of the Cuchivero Group.

3D density and magnetic susceptibility (MVI) inversion models show that the higher density sources are located close to the edges interpreted. High magnetic susceptibility sources are more scattered but shows spatial and depth distribution closely related with the edges. This relation of high density and magnetic susceptibility distribution are coherent with the high gravity gradients reported for the boundaries of the Ventuari-Tapajós province in Brazil and also strong density and magnetic susceptibility variations that separate major tectonic events in the Gawler Craton in Australia. It must be noted that the interpreted contacts of the Parguaza Granite with basement rocks of Cuchivero/ Mitú Groups are characterized by strong density contrasts but without magnetic susceptibility variations.

The NNW-SSE edge located at the SE of the area parallel to the
emplacement of the anorogenic intrusive body. Features or maybe this pre-existing weakness zone allowed the formation allow to identify and delineate major structural and tectonic displacement that are reflected in the apparent tectonic control of the Amazonian Craton in the study area, but the structural framework interpreted in the present study provide new information that helped to improve this contribution.

Acknowledgement

The authors want to acknowledge the Departamento de Geociencias of the Universidad Nacional de Colombia and the Servicio Geológico Colombiano (Geological Survey of Colombia) for the support and collaboration in the present study as a part of the PhD in geosciences thesis of the first author. We also would like to thank Dr. Colin Reeves and other anonymous reviewer for their suggestions and recommendations that helped improve this contribution.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.tecto.2020.228705.

References

